Macroscopic description for a quantum plasma micro-instability: the quantum Weibel solution
نویسنده
چکیده
The Weibel instability in the quantum plasma case is treated by means of a fluid-like (moments) approach. Quantum modifications to the macroscopic equations are then identified as effects of first or second kind. Quantum effects of the first kind correspond to a dispersive term, similar to the Bohm potential in the quantum hydrodynamic equations for plasmas. Effects of the second kind are due to the Fermi statistics of the charge carriers and can become the dominant influence for strong degeneracy. The macroscopic dispersion relations are of higher order than those for the classical Weibel instability. This corresponds to the presence of a cutoff wave-number even for the strong temperature anisotropy case.
منابع مشابه
Quantum Weibel instability
The Weibel instability is analyzed for quantum plasmas described by the Wigner-Maxwell model. For a suitable class of electromagnetic potentials, the Wigner-Maxwell system is linearized yielding a general dispersion relation for transverse electromagnetic waves. For a double Gaussian equilibrium with temperature anisotropy, the derived dispersion relation generalizes the classical Weibel instab...
متن کاملCompressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملسالیتونهای متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفهای
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied by deriving the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...
متن کاملElectrostatics Modes in Mono-Layered Graphene
In this paper, we investigated the corrected plasmon dispersion relation for graphene in presence of a constant magnetic field which it includes a quantum term arising from the collective electron density wave interference effects. By using quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, the longitudinal plasmons ar...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کامل